CHARACTERIZATION OF CARBON ACTIVE SITE BY CO2 GASIFICATION Takuya Isobe, Katsuya Inomata, Yoshinobu Otake Department of Applied Chemistry, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan ## Introduction The CO₂ gasification with a carbon is widely applied in coal gasification and iron making etc. This reaction was extensively studied in 1980-90s, and McEnaney summarized CO₂ reaction with coal char [1]. Recently, reforming CO₂ to CO, which is used as syn gas, has been studied as one of the recycling technologies for emitted CO₂ [2]. In the gasification reaction of carbon with CO₂ is proposed as follow; $$C_{active} + CO_2 \rightarrow C(O) + CO$$ (1) $$C_{active} + CO_2 \rightarrow C(O) + CO$$ $$C(O) \rightarrow CO + C_{active}$$ $$C + CO_2 \rightarrow 2CO$$ (1) (2) (3) $$C + CO_2 \rightarrow 2CO$$ (3) The eq(2) is reported to be a rate determining step. Therefore, the concentration of the C(O), an intermediate form for CO₂ gasification, is important to promote the CO₂ gasification reaction [3]. But, there is no quantitative research to investigate the relationship between the amount of C(O) and the reactivity in CO₂ gasification. In this study, activated carbons were oxidized to introduce the difffernt amount of C(O) on the carbon surfaces by varying the oxidation conditions. The reactivity of oxidized activated carbons with CO₂ estimated by Temperature programmed desorption (TPD) technique. ### **Experimental** The activated carbon (AC), derived from phenolic resin, was immersed in HCl and HF solutions and then washed thoroughly in distilled water to remove impurities. The demineralized AC thus prepared is donated as BEL. The BEL sample was oxidized to introduce the C(O) complexes in HNO₃ solution(N-BEL) or in air(A-BEL). The amount of C(O) was adjusted by varying oxidation time and temperature. The rate of gas evolution and consumption was estimated by TPD technique. The TPD measurements in Ar were performed to estimate the amount of C(O) present on the carbon surfaces. The TPD techniques were also performed in 1.95vol. %H₂ (Ar balanced) to estimate the amount of C_{active}. The TPD runs were carried out under a flowing of 3.06vol.% CO₂ (Ar balanced) to evaluate the CO₂ gasification rate. All the TPD measurement in different atmospheres was made at 5 K/min up to 1273 K in a horizontal furnace equipped with a quartz tube. Before the measurement, sample was dried in the furnace. During TPD runs, the concentrations of CO, CO₂, H₂ and other two gases (H₂O, CH₄, not shown in this article) were monitored by a set of gas chromatographs to estimate the rate of gas evolution of gases and that of CO₂ consumption. #### Results and Discussion The amount of C(O) was estimated from the amount of CO gas during TPD in Ar up to 1273K. The oxidation of BEL in various oxidation condition successfully varied the amount of C(O) on the carbon sample of BEL. The amount of Cactive of oxidized BELs was estimated from the amount of the H_2 chemisorption on C_{active} . The decomposition of C(O) and the chemisorption of H2 were monitored simultaneously during the TPD runs in a flowing 1.95vol.% H₂. Fig.1 shows the relationship between the amount of H₂ chemisorbed and that of C(O) complexes present in the oxidized carbons of N-BEL and A-BEL. The H₂ chemisorption increased proportionally with the amount of C(O). The approximated curve indicates that the ratio of H₂ chemisorbed / C(O) is about 0.3. Making an assumption where $H/C_{active} = 1$, the ratio of $C_{active}/C(O)$ is about 0.6. This implies that only ca. 60% of C(O) can generate the C_{active}. Fig.1 Relationship between the amount of C(O) and H₂ chemisorbed on the BELs oxidized in various conditions. To further discuss eq(2), the CO₂ gasification rate of the BELs containing various amounts of C(O) was measured by monitoring CO gas evolution. In order to distinguish CO gas evolved as a result of CO2 gasification from CO gas decomposed from C(O), the rate of CO gas evolved in Ar was subtracted from that in 3.06% CO₂. The values thus calculated are differential rates of CO evolution presented as \triangle CO. Similarly the CO₂ consumption associated with gasification was calculated from a differential rate of CO2 gas evolution/consumption. The \angle CO and CO₂ consumption profiles for various oxidized BELs were shown in Fig.2A and B. The \(\sumset CO \) profile for BEL, which contained a small amount of C(O), appeared over 973K (peak3, in Fig.2A). In the same temperature range, CO₂ consumption profile for BEL also showed the peak (peak2, in Fig.2B), suggesting that the peak3 in \(\subseteq CO \) profile is attributed to CO evolved as a result of the gasification of carbons with CO₂. The similar peak in size and position was also seen in this temperature range for all ∠CO profiles for N-BELs. Therefore, CO gas evolved as peak3 in the \angle CO profiles is nothing to do with the existence of C(O). Introducing C(O) on the carbon surfaces resulted in the appearance of other two peaks in ∠CO profiles at lower temperatures. One is located round 900 K (peak1, in Fig.2A), the other is at 1100 K (peak2, in Fig.2A). For peak1 in \triangle CO profiles, the corresponding CO_2 consumption peak was not detected in CO_2 consumption profiles. The CO_2 consumption peak (peak1 in Fig.2B) was detected at ca. 1100K, where the peak2 located in \triangle CO profile. If these peaks are attributed to the CO_2 gasification, CO/CO_2 obeys a stoichiometric ratio; 2. The amount of \triangle CO in peak2 is plotted against the amount of CO_2 consumption in peak1 (Fig.3). The slope of approximated curve is about 2. Therefore, the CO gas evolution from peak2 in \triangle CO profile is attributed to CO_2 gasification. **Fig.2** ∠CO profile(A) and rate of CO₂ consumption profile(B) for BEL, N-BELs performed by TPD in CO₂. **Fig.3** Relationship between CO₂ in peak1 and ∠CO in peak2 In order to discuss CO_2 gasification in terms of reaction rate, we define the maximum rate in peak2 in $\angle CO$ profile as a rate of CO_2 gasification (r_{max}) . Fig.4 shows the relationship between the amount of C(O) and r_{max} . The values of r_{max} increased and then decreased with the amount of C(O). The increase in the concentration of C(O) promotes the rate determining reaction expressed in eq(2). Introducing larger amount of C(O) results in the increase in concentration of CO in eq(1), which should retard CO_2 gasification. In order to ensure the role of excess C(O), CO_2 gasification was performed by intentionally adding 1.6vol.% CO, together with 3.06% CO_2 (Fig.5). The r_{max} decreased by mixing 1.6vol.% CO, suggesting the formation of excess amount of C(O) may inhibit CO_2 gasification of carbon. **Fig.4** Relation between the rates of CO₂ gasification and the amounts of C(O) on the various oxidized BELs. **Fig.5** Rate of \triangle CO gas evolution profile from A-BEL in CO₂ (A) and in mixture of CO₂ /CO (B). ## **Conclusions** The decomposition of surface C(O) complexes in part generates C_{active} , the amount of which is characterized by H_2 adsorption. These C_{active} are also removed as a result of CO_2 gasification. Introducing C(O) promotes the CO_2 gasification, whereas the formation of large amount of C(O) reduces the reaction rate for CO_2 gasification. #### References - [1] McEnaney. Active Site in relation to gasification of coal chars. Fundamental Issues in Control of Carbon Gasification Reactivity, Netherlands: Kluwer Academic, (1991), 175-203 - [2] Sónia A. Carabineiro, Douglas W. McKee, Isabel F. Silva. Uncatalyesd and catalysed CO₂ reaction using metal catalysts and binary vanadium mixtures supported on activated carbon. Carbon 39 (3) (2001) 451-463 - [3] Suzuki T, Ohme H, Watanabe Y. Mechanism of Alkaline-Earth Metal Catalyzed CO₂ Gasification of Carbon. Energy Fuels 8 (1994) 649–658