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Abstract 
 
First principles density functional calculations within the Local Density Approximation (LDA) have provided highly 

plausible results but the folklore of interlayer interactions is that LDA does not include an important part of the physical 
interaction between layers (dispersion forces i.e. van der Waals force) and therefore should not be relied upon. Contradicting 
this belief, we have demonstrated that LDA performs excellently for graphite and reproduces with precision all the elastic 
properties.  
 

Introduction 
 
Graphite, the prototypical-layered material consists of parallel sheets of atoms in the AB Bernal stacking sequence. The 

crystal structure is consistent with the 4
6hD ( 36 /P mmc ) space group and has four carbon atoms per unit cells. The intralayer 

bonding is due to overlap between sp2-hybridized orbital forming σ-bonds between nearest-neighbour C atoms. In addition, 
π-bonding takes place between the remaining pz-orbitals on each atom that point perpendicularly to the layer; such π-
electrons are delocalized throughout the layer so that individual single and double carbon bonds cannot be recognized. This 
highly anisotropic bonding characterized by exceptional strong sp2 covalent intralayer bonding and weak interlayer bonding 
gives rise to a number of unusual properties that are of long-standing technological and scientific importance. Last but not 
least, there has been a resurgence of interest in graphite as a primary component of the graphite intercalation compounds 
formed by inserting various atoms or molecules between the loosely bonded layers of a graphite.  

Several sources of crystalline graphite are available, but differ somewhat in their overall characteristics. Natural single 
crystal graphite flakes are usually small in size (typically much less than 0.1 mm in thickness), and contain defects in the 
form of twinning planes and screw dislocations. They also contain chemical impurities like transition metals. The most 
commonly used high-quality graphitic material today is Highly Orientated Pyrolytic Graphite (HOPG), which is prepared by 
the pyrolysis of hydrocarbons at temperatures above 2000°C  and the resulting pyrolytic carbon is subsequently heat treated 
to higher temperature to improve its crystalline order. When stress annealed above 3300°C, the HOPG exhibits electronic, 
transport, thermal, and mechanical properties close to those of single-crystal graphite, showing a very high degree of c-axis 
alignment. This material is commonly used because of its good properties, high chemical purity, and relatively large sample 
sizes Kelly (1981), Dresselhaus et al (2000). 

The elastic behaviour of a completely asymmetric material is specified by 21 independent elastic constants, while for 
isotropic material, the number is reduced to 2. In between these two limits, the necessary number is determined by the 
symmetry of the material. In case of hexagonal crystals (graphite), the number of the second-order elastic constants is 5. 
The most complete experimental study on the graphite elastic constants is the work of Blakslee et al (1970). These authors 
have determined the full sets of second-order elastic constants by ultrasonic, sonic resonance and static test methods. The 
graphite samples used by Blakslee et al were turbostratic graphite (plane randomly oriented1).  

These samples were annealed under a compressive stress perpendicular to the basal plane in order to promote the 
crystalline growth (up to 20 − 50 μm) and aligns within 0.1º − 0.5º along the c-axis. Among the five elastic constants found 
by Blakslee et al, two of them (C44, C13) have been revised Cousin et al (2003). 

The reported value of C44 was lowered by the gliding of basal dislocations (the stress needed to move basal dislocations 
in graphite is quasi zero). Baker et al (1964) have shown that a light dose of neutron irradiation at relatively low-temperature 
pins the dislocations and thereby increase the C44 value up to 5.05± 0.35 GPa (see also Grimsditch (1996, 1983) and Lee et al 
(1990)). The latter result is the revised value of C44. 

A new value for C13 was proposed by Zhao et al (1989). In this work, x-ray diffraction data have been obtained on 
polycrystalline graphite and using the linear bulk modulus, these authors suggested a higher value of 22 ± 2 GPa. 
Unfortunately, they inadvertently used the expression for the planar bulk modulus and not the linear bulk modulus. If their 
procedure was carried through correctly, the value of C13 is lowered to 7.9 ± 3.5 GPa Cousin et al (2003). The latter elastic 
constant is the revised value for C13. 

                                                            
1 Because second-order elasticity is isotropic in the basal plane, the random plane orientations do not affect the second-order elastic 
constants Blakslee et al (1970). This isotropy does not extend to the third-order elastic constant Cousin et al (2003). 
 



In Table 1 are resumed the second-order elastic constants measured using different experimental techniques (bottom side 
of the table) and calculated within the local density functional theory (top side of the table). The last row resumes the revised 
experimental elastic constants Cousin et al (2003) that are believed to be the most reliable. As I pointed out in the introduction, 
the value of the elastic constant C13 is positive for experimental studies and negative for theoretical studies. 
 

Methods 
 
The calculations are based on density functional theory in the local density approximation using the exchange-correlation 

functional as parameterized by Perdew and Wang (1992). Norm-conserving pseudopotentials with non-local core corrections 
based on the Hartwigsen-Goedecker-Hutter scheme (1998) were used. The charge density was represented by a plane-wave 
basis in reciprocal space expanded up to 2000 Ryd, while the Brillouin zone integrations were performed with a Monkhorst-
Pack (1976) scheme with mesh up to 128 · 128 · 16 k-points. The basis sets employed consist of s, p and d Gaussian orbital 
functions with four exponents, centered at the atomic sites. Typical basis set used were pppp, pdpp, pddp, pdddp.  

Here the elasticity of graphite was studied using the basis set pdpp, a k-points mesh of 16 · 16 · 6 and a charge density 
cut-off of 600 Ryd. Test calculations have shown that even if the total energy is 5 mRyd/atom higher than the convergence 
value (basis set pdddp, k-points mesh of 128 · 128 · 16, charge density cut-off of 2000 Ryd), the lattice parameters and 
respective elastic constants were still well convergent (due to cancellation of errors between energy differences). The lattice 
parameters found were a = 2.444 Å and c = 6.63 Å in good agreement with the respective experimental values a = 2.452 Å, 
c = 6.67 Å (Zhao et al (1989), Baskin et al (1955)). 
 

The Classical Elastic Constants 
 
Under small deformations, the elastic energy of a crystal can be expressed as a Taylor expansion in terms of the strain 

components (Landau and Lifshitz (1986)): 
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where w is the elastic energy per unit volume, Cij, Cijk are the second- and third-order elastic constants and εi are the strain 
components. For hexagonal crystals, we have 15 independent elastic constants, while the remaining constants are related to 
them by crystal symmetries. Therefore, the strain energy became: 
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Table 1.  The second-order elastic constants in graphite. The bottom (top) side of the table is referring to the experimental 
results (theoretical results within LDA density functional theory). The revised experimental elastic constants are shown in the 
last row of the table. 

 Second-order elastic constants Cij (GPa) 
 C11 C12 C33 C44 C13 C11+C12 
Trickey et al (1992) -- -- 13 -- -- -- 
Hasegawa et al (2004) -- -- 30.4 -- -- -- 
Yin et al (1984) -- -- 54 -- -- -- 
Boettger et al (1996) -- -- 40.8 -- -0.5 1279.6 
Jansen et al (1987) -- -- 56 -- -12 1430 
Mounet et al (2005) 1118 235 29 4.5 -2.8 1353 
Blakslee et al (1970) 1060±20 180±20 36.5±1 0.018-0.035 15±5 1240±40 
Zhao et al (1989) -- -- -- -- 22±2 -- 
Grimsditch (1996)  -- -- -- 5.05±0.35 -- -- 
Rev. Exp. (Cousin et al (2003)) 1060±20 180±20 36.5±1 5.05±0.35 7.9±3.5 1240±40 



Then the elastic constants are determinate by applying different strain components εi to the equilibrium lattice configuration. 
Under strain the primitive lattice vector ai are transformed into the new lattice vectors ia′ by: 
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where ε was the strain tensor and I is the identity matrix. The strain tensor ε is linked with the strain components  εi by: 
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For selected strain components, the respective second-order elastic constants are determined by fitting the strain energy w 
with the respective energy values obtained by ab-initio simulations. 

The calculated elastic constants are shown in Table 2 together with the revised experimental elastic constants. This work 
confirms the previous theoretical studies and in general slightly improves the agreement with respect to the revised 
experimental data. The elastic constants C11, C12, C44 and the value C11+C12 are well in agreement with the experiment while 
the value of C33 and in particular, C13 show a remarkable difference of about 14% and 129%, respectively. The temperature 
effects Mounet et al (2005) and/or crystal defects El-Barbary et al could explain the ±14% difference in values between 
theory and experiment, nevertheless a disagreement of 129% is far to be explained and a more elaborate explanation should 
be require. Later in the last section of this work we have shown that the values of the mesoscale elastic constant 33

MC

 

and 
13
MC are both in agreement with experiments within a range ±11%. 

 
The Mesoscale Elastic Theory of Graphene 

 
In this section, we have studied the formation energy of a bent thin plane beyond the harmonic approximation. This 

theory will describe the mechanical properties of a single layer of graphite, i.e. graphene. Within the isotropic elastic theory, 
the formation energy of a thin bent plane is given by the well know Landau and Lifshitz formula (1986): 
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whereζ is the vertical displacement of any point on the plane, E is the Young modulus andσ is the Poisson ratio. The 
simplest solution of the Landau and Lifshitz equation is a pure sinusoidal bending mode along only one direction (for 
instance, we have chosen the x-direction):  
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where a is the amplitude and λ is the wavelength of the bending mode. We have demonstrated2 that this solution corresponds 
to the lowest formation energy and therefore it is the fundamental solution of equation 5. Taking in account the latter solution 
the formation energy of a bent plane became:  
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Therefore the most favorable bending mode possesses the largest wavelength λ and the smallest amplitude a . The 
relationship between the amplitude a and the strain ε is given by the following elliptical integral: 
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where arcL the arc-length of the plane along the x-direction. As this elliptical integral has no analytical solution, we have 
solved it with numerical approximate solutions. For small value of /a λ we can expand the square root in Taylor series. 
Taking until the second order terms the elliptical integral became:  
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The latter equation represents the 2nd-order approximate solution of the elliptical integral. Taking the nth-order expansion 

                                                            
2 The general demonstration of this result can be found in Savini et al. 



of the Taylor series, we have found the respective approximate solution of the elliptical integral thn
a . Test calculations have 

shown that the 6th-order approximation was a good compromise between precision and calculation time. Here for simplicity 
we have discussed the results using the simpler 2nd-order approximate solution. Using the 2nd-order approximate solution the 
formation energy become:  
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In the general case the strain ε applied to the plane should contain two different components: 

bondε : The homogeneous in-plane compression or expansion. In this case, all the distance between atoms lying 
along the plane are equally compressed or expanded by the same strain amount; 

bendε : The compression due only to the bending with amplitude a and wavelength λ. In this case, all the atoms 
of the plane lie on a sinusoidal surface with the distance between atoms along the plane unchanged. 

Therefore, the corresponding bent formation energy can be written as:  
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This simple relation shows that for small deformations the bent formation energy is linearly proportional to the bending strain 
and inversely proportional to the length of the plate L. Then the total formation energy of the plane is the sum of the bending 
energy component bendE and the energy due to the homogeneously compression or expansion of the plane bondE : 
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Therefore, in the compressed region we can have the following three scenarios: 
1. Homogeneously compressed flat plane: In this case, all the atoms lie on the flat plane and the distance between atoms 

along the x-axis are equally compressed. In this regime the formation energy of the graphene plane is:  

                                            
2
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2. Pure uncompressed bent plane: In this case, all the atoms lie on the flat plane and the distance between atoms along the x-
axis are equally compressed. In this regime the formation energy of the graphene plane is:  
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3. Homogeneously compressed bent plane: In this case, all the atoms of the plane lie on a sinusoidal surface with the 
distance between atoms along the x-axis equally compressed. In this regime the formation energy lie on the flat plane and 
the distance between atoms along the x-axis are equally compressed. In this regime the formation energy of the graphene 
plane is:  
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The first and third regimes are shown in the figure 1 (right and left regions, respectively). In the following theorem, we have 
demonstrated that the second scenario is not possible. 
 
Theorem: A thin plane is always homogeneously compressed (bent or flat), but it is never a purely uncompressed bent plane. 
Proof. 

Imposing the condition that minimises the total formation energy: 
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we found: 
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as the strain component bendε must be always negative3 the latter equation represents a solution only when  the total strain 
ε is under a critical value εcritical. The critical strain is found imposing the condition:  

                                                            
3 A positive value implies imaginary amplitudes with no physical meaning. 



 
 

Figure 1.  The formation energy of a graphene plane when compressed (ε < 0) or expanded (ε > 0). The green and blue 
curves represent the formation energies when the strain ε is above or under the critical strain εcritical, respectively. The red line 
represents the strain component bendε , while the black line represents bondε (for simplicity both are shown only in the 
compression region) 
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imposing a real negative solution, we have found:  

               

2
33

2

2 1 2 1 2 27 3 3 4 27
3 3 3 22 27 3 3 4 27

critical
K K K

K K K
ε − + − += − + +

− + − +    (19)

Therefore above the critical strain εcritical the plane are flat (εbent = 0 and εbond = ε), while under the critical strain the plane 
are bent (εbent = ε - εcritical and εbond = εcritical).  

In the following discussion, we have demonstrated that the plane is never a purely uncompressed bent plane. The proof was 
splits into the two possible cases and demonstrated via reduction ad absurdum (in both cases, the contradiction of the 
proposition is found): 

1. Case: ε ≥ εcritical           (i.e. flat plane homogeneously compressed or expanded)  
If we suppose that the formation energy of a purely uncompressed bent plane (right sides of the following inequity) is 
lower than the energy of a homogeneously compressed plane (left sides of the following inequity) we have:  
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If we suppose ε ≥ εcritical the corresponding bent strain is εbent ≥ 0 and we can write the following relations:  
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Therefore, the inequity of the equation 20 can be written as:  
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The latter inequity is obviously impossible, therefore when ε ≥ εcritical the plane is always homogeneously compressed or 
expanded. 

2. Case: ε ≤ εcritical          (i.e. bent and homogeneously compressed plane) 
If we suppose that exist a range of strain values where the formation energy of a pure uncompressed bent plane (right 
member of the following inequity) is lower than the energy of a homogeneously compressed bent plane (left member of 
the following inequity) we have: 



( ) ( )
2

112 21 1
bent

bend bond bendC C C
L L

ε εε
ε ε

− −⋅ + ⋅ > ⋅
+ +   (23)

If we suppose ε ≤ εcritical we have found that the corresponding strain components are:  
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Therefore the previous inequity became: 
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The latter inequity is obviously impossible. Therefore a graphite plane cannot be a purely uncompressed bent plane but it 
is always homogeneously compressed. 

q.e.d. 
 

The Mesoscale Elastic Theory of Graphite 
 
In this section, we have extended the mesoscale elasticity for the graphite case (several graphene planes stacked along 

the c-axis). The main goal of this section is to describe the disregistry energy i.e. the interactions between bent planes. 
Although weak, this energy is of paramount importance in order to describe the full set of the mesoscale elastic constants. 

When several graphite planes are bent, we always introduce locally a range of different stacking fault disregistries ∆d 
between the planes. The disregistry ∆d is defined with respect to the perfect AB stacking. For nearly flat plane the disregistry 
∆d is zero while when the slope is negative (positive) the disregistry ∆d becomes negative (positive), respectively. As the 
bending slope is proportional to the amplitude ā and inversely proportional to the wavelength λ, we can expect that the 
modulus of the disregistry value dΔ should be proportional to the ratio ā/λ. 

A convenient way to find an approximate solution for the disregistry ∆d with respect to the amplitude a , wavelength λ, 
is to approximate the bending slope with its corresponding tangent line. Within this approximation, the disregistry became: 
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where [ )0,ξ λ∈  is the x-coordinate along the bent plane. 
The latter formula possesses the same periodicity λ of the bended plane. As the /a λ

 
becomes smaller, the disregistry 

function tends to a cosine function with amplitude ( )0 /a cπ λ⋅ ⋅ . Then we have studied the formation energies associated 
with the disregistry ∆d(ξ) and the strain ε3 along the c-axis. In order to calculate the energy associated with these strain 
vectors we have applied a grid of 26 displacements along [1210 ] direction with increments 0.005 ranging from ε5=0.000 to 
ε5=0.125. For each of these displacement we have applied 24 strain ε3 along [0001] direction with the same increment 0.005 
ranging from ε3=-0.060 to ε3=0.060. 

The corresponding energies of each strained unitcells are calculated using density functional theory within the LDA 
approximation. Then this energy surface was fitted by a function of order n+m defined by: 
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this function is an n-order power series of sine function along the [1210 ]
 
direction and an m-order polynomial function along 

the [0001] direction (c-axis). The n, m orders of the function ( ),fitE x y was then increased until the maximum error between 
fitted values and respective data were equal or less than the precision of the data themselves. 

Finally, the total disregistry energy Ecc

d ( )3 , ,aε λ  is defined as the sum of the disregistry energy ( )3,fitE d εΔ
 
over all the 

atom contributions along the bent plane. Therefore, the total disregistry energy is determined by: 
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where n is how many time the primitive unitcell is repeated along the x-axis (i.e. the [1210 ]
 
direction), while ξi is the 

coordinate along the x-axis of the ith atom. 



               
 

Figure 2.  The formation energy per unit volume w with respect to the strain increments ε1 and/or ε3. The linear behaviour in 
the compression region is due to the plane bending. (Left) The mesoscale elastic constant 11

MC  is determined by fitting the ab-
initio data; (Right) The corresponding fitted value represents the mesoscale elastic constant 13

MC (The unitcell length was 
76.21 Å corresponding to 256 numbers of atoms). 

 
 
Then the respective formation energy of graphite is found by including the energy term due to the disregistry between 

graphite layers. In analytical formula became: 
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where C11 is the classic elastic constant previously determined (C11=1105 GPa), Ecc

d ( )3 , ,aε λ is the total disregistry energy 
and Cbend is the bending constant for single plane of graphite (Cbend = 254 Pa/Å). The latter formula is used to test and extent 
the following ab-initio methodology. In the density functional approach, we have used different unitcell sizes with number of 
atoms 64, 128, 256, 512, respectively. 

The corresponding lattice vectors 1 2 3, ,a a ar r r
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where natoms is the number of atoms of each unitcell and a0 is the in-plane lattice constant (a0 = 2.444 Å).  
The mesoscale elastic constants are determined by applying different strain vectors εr to the lattice vectors a1, a2, a3:    
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under strain the primitive vectors ai are transformed into the new lattice vectors i′a by: 
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where I is the identity matrix and ε is the strain tensor: 
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⎜ ⎟
⎝ ⎠

     
(33)

the latter tensor is linked to the strain vector by: ( )1 2 3 4 5 6, , , , ,ε ε ε ε ε ε ε=
r

. The chosen strain components εi were 41 ranging 
between ±0.02 with increment 0.001. Then the mesoscale elastic constants were found by fitting the following second-order 
Lagrangian strain energy: 

     
( ) ( )2 2 2 2 2 2 2

1 2 6 11 1 2 6 12 3 33 1 3 2 3 13 4 5 44
1 1 1 1 1
2 4 4 4 2

M M M M Mw C C C C Cε ε ε ε ε ε ε ε ε ε ε ε ε⎛ ⎞ ⎛ ⎞= + + + + − + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     
(34)

with respect to the ab-initio energies values. For each applied strain, the respective unitcells have been optimised using the 
conjugate gradient routine implemented in the local density functional approach. 



Using the elastic theory and then corroborated with the ab-initio results we have found that the critical strain εcritical which 
divides the bent and flat plane behaviours decrease until a fixed wavelength value of ~70 Å (called critical length criticalλ ). 

Under this critical wavelength, the disregistry energy became dominant freezing the critical strain to a fixed value of 
0.0026 for any unitcell longer than criticalλ . The latter property represents the main difference between graphite and graphene 
mesoscale elastic theory without of which the unambiguous definition of elastic constants it would have been impossible. 
Indeed due to the frozen critical strain, also the respective mesoscale elastic constants remain fixed for unitcell sizes larger 
than the critical wavelength. In the following discussion, we have described in details the single mesoscale elastic constants. 

Mesoscale Elastic Constants 11
MC : 

For the mesoscale elastic constants, 11
MC the only non-zero strain component is ε1. In Figure 2 (Left), the ab-initio results (red 

points) are compared with the elastic theory previously developed (black curves). We have found a very good agreement 
between the two theoretical approaches. The resulting mesoscale elastic constant 11

MC drop from 1105 GPa (classical elastic 
constant, i.e. flat plane) to the value 1051 GPa (for unitcell larger than the critical wavelength > 70 Å). Nevertheless, we 
observed that both the values are in agreement with the experiment (1080±20 GPa). The reason why 11

MC does not change 
appreciably is because the second-order elastic constants are even-order elastic terms. The linear behaviour due to the 
bending is mainly dominated by the odd-order terms of the Lagrangian energy. Therefore, larger deviation should occur 
between the third-order mesoscale and classical elastic constants. 

Mesoscale Elastic Constants 33
MC : 

The mesoscale elastic constant 33
MC slightly increase from 30.6 GPa (classical elastic constant, i.e. flat plane) to the convergent 

value 31.8 GPa (for unitcell larger that the critical wavelength > 70 Å). This slightly changing is reflecting a weak plane 
bending when the c-axis expands (positive value of the strain ε3). Compared with the revised elastic constants (36.5±1) the 
mesoscale elastic constant 33

MC is underestimated by 10.4 %. 

Mesoscale Elastic Constants 13
MC : 

In Figure 2 (Right) is shown the strain energy with respect to the strain components ε1, ε3. This energy surface is fitted by a 
10th-order polynomial function in two variables (ε1, ε3). The resulting coefficient term ε1×ε3 correspond to the mesoscale 
elastic constant 13

MC . The values found are negative when the plane is flat (above the critical strain) and positive under the 
critical strain with a convergent value +6.2 GPa (see Table 2). A good agreement with the revised experimental value (7.9 ± 
3.5 GPa) is found. 

Mesoscale Elastic Constants 44
MC : 

For the 44
MC the only non-zero strain component is ε5. In this case the ab-initio approach showed that the graphite planes are 

always flat and never bent, therefore the resulting mesoscale elastic constant degenerate into the corresponding classical 
value 44

MC = C44. 
 
 
Table 2.  The mesoscale and classical elastic constants compared with the experimental revised elastic constants. Clearly, the 
mesoscale elastic constants improve the agreement between theory and experimental results (the elastic constants units are in 
GPa). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 Mesoscale elastic constants [GPa] Revised elastic constants [GPa] 

11
MC  1051 1060 ± 20 

12
MC    171 180 ± 20 

33
MC   31.8 36.5 ± 1 

13
MC     6.2 7.9 ± 3.5 

44
MC     4.8 5.05 ± 0.35 

11 12
M MC +C  1222 1240 ± 40 

 Classical elastic constants [GPa] Revised elastic constants [GPa] 
C11 1105 1060 ± 20 
C12   182 180 ± 20 
C33  30.5 36.5 ± 1 
C13    2.3 7.9 ± 3.5 
C44    4.8 5.05 ± 0.35 
C11 + C12 1286 1240 ± 40 



Mesoscale Elastic Constants 12
MC : 

Finally, the elastic constant 12
MC was found using the following strain components ( )1 2, , 0,0,0,0ε ε ε=

r
. As for the 11

MC case, 
the corresponding value drop from 182 GPa (classical elastic constant, i.e. flat plane) to the value 171 GPa (for unitcell larger 
that the critical wavelength > 70 Å). We have observed that both are in agreement with the revised experimental value (180 ± 
20 GPa). 

Conclusion 
 

Summarising we have developed a complete elastic theory beyond the harmonic approximation that describes the behaviour 
of graphite under any applied strains. We have introduced a new class of elastic constants called mesoscale elastic constants, 
which confirms with unrivalled precisions the revised experimental elastic constants measured in HOPG samples (see Table 
2).  
The mesoscale elastic theory predict that under the critical strain the elastic behaviour is due to the classical elastic constants 
while above the critical strain the elastic behaviour is dominated by the mesoscale elastic constants. 
We observe that, different quality of graphite samples could favourite the rising of one elastic behaviour over the other. For 
instance, non-perfect graphite like HOPG (always polycrystalline materials) should favourite the mesoscale elastic behaviour 
while single crystal graphite (Kish graphite) should favourite the classical elasticity.  Furthermore different experimental 
measures could be able to detect the mesoscale or classic elasticity depending on the type of the techniques (x-ray, ultrasonic, 
sonic resonance ort static test methods). 
We must observe that the only theoretical value that is not completely in agreement with respect to the experimental data is 
the mesoscale elastic constant 13

MC = 31.8 GPa (the respective revised value is 36.5 ± 1). Nevertheless, the temperature effects 
Mounet et al (2005) and/or crystal defects El-Barbary et al can easily explain this relatively small difference (10.4 %) 
between theory and experiment. 
Finally using the same background theory but applied for the graphene case, we can demonstrate (see Savini et al): 

• The bending modes possess always sinusoidal solutions; 
• The 1-dimensional bending is always more favourable than a 2-dimensional one; 

The latter results give new insight into the structural atomic properties of 2-dimensional materials with strong implications 
for the new field of graphene science. Finally, we observe that the mesoscale elastic theory should extend to all the other 
important layered materials like BN, clays and MgB2. 
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