INVESTIGATION OF CARBON DEPOSITION OF METHANE DECOMPOSITION ON HIGHLY ACTIVE MAGNESIUM POWDER OF NANOMETRIC SIZE

S. Cui1), Y. L. Tian1), C. Z. Lu1), H. M. Kang2) and L. Zhang2)

1)Department of Chemistry, 2)Department of Chemical Engineering
Tianjin University, Tianjin 300072, P. R. China

Introduction

Highly active magnesium powder of nanometric size (Mg*) doped with transition metal compounds, can be obtained from the dehydrogenation of the magnesium hydride (MgH\textsubscript{2}) prepared catalytically according to references [1, 2]. At 723 K the NiCl\textsubscript{2}-doped Mg* can react fairly rapidly with nitrogen to form magnesium nitride of nanometric size [2-5]. In this work we investigated the reactions of NiCl\textsubscript{2}-doped and undoped Mg* with CH\textsubscript{4} by in-situ thermogravimetric balance and the morphology of carbon deposits on Mg* by transmission electron microscopy (TEM) measurement.

Experimental

The undoped and doped MgH\textsubscript{2} were prepared catalytically according to references [1, 2]. The prepared MgH\textsubscript{2} (4-6 mg) was transferred under Ar atmosphere to a quartz basket (8 mm id. and 5 mm high). The basket was then hung in the middle of the vertical quartz tube reactor (14 mm id. and 8 cm long) which was heated by a furnace. CH\textsubscript{4} flow rate was 40 ml min-1 and heating rate 10 K min-1. The weight changes of the Mg* samples were recorded by an in-situ thermogravimetric balance. CH\textsubscript{4} (99.99\%) and Ar (99.99\%) were used without further purification. TEM measurements were performed using JEOL JEM-100C X II operated at 100 kV. The samples were treated in an ultrasonic bath of dehydrated organic solvent and then dispersed on a carbon TEM grid with holes.

Results and Discussion

Table 1 shows four different Mg* systems, which were doped with different amount of NiCl\textsubscript{2} and Ni powder, respectively. The in-situ thermogravimetric curves of four different Mg* samples are shown in Figure 1. The first part of weight loss of the curves expresses the process of dehydrogenation of the samples and Mg* is formed in-situ. The part of weight gain of the curves is that of carbon deposition of CH\textsubscript{4} decomposition on Mg*. The second part of weight loss of the curves may be due to the carbon elimination. The weight gain of S1 sample (undoped Mg*) begins from 683 K and continues to 1013 K, the total weight gain is 9 wt\% of the original weight of S1. S1 begins losing weight when the temperature is higher than 1013 K. The weight gain of S2 (2.5 mol\% NiCl\textsubscript{2}-doped Mg*) begins from 573 K and continues to 868 K, the total weight gain is 30 wt\% of S2, but the weight loss is serious with increasing the temperature further (weight loss 23 wt\%). The weight gain of S3 (20 mol\% NiCl\textsubscript{2}-doped Mg*) begins from 948 K and no tendency of weight loss is observed until to 1073 K, the total weight gain is 9 wt\% of S3. The weight gain of S4 (2.5 mol\% Ni-doped Mg*) begins from 653 K and continues to 984 K, the total weight gain is 10 wt\% of S4, then the weight loss is obvious with increasing the temperature further (weight loss 4 wt\%). It was reported that the temperature of the commercial Mg powder reacting with CH\textsubscript{4} was ca. 923 K [6].

TEM measurements show that the morphology of carbon deposits on four different Mg* samples are very distinct (Figures 2a-2d). In Figure 2a, a kind of coral-like morphology produced on the undoped Mg* is observed. In Figures 2b and 2c, the morphology of carbon deposits formed on the NiCl\textsubscript{2}-doped Mg* are irregular. A sand-like morphology formed on the Ni-doped Mg* is observed in Figure 2d.

Conclusions

The temperature of Mg* reacting with CH\textsubscript{4} reduces greatly. Doping NiCl\textsubscript{2} and Ni powder remarkably affects not only the activity of Mg* reacting with CH\textsubscript{4}, but also the stabilities and morphology of carbon deposits formed on Mg*. The 2.5 mol\% NiCl\textsubscript{2}-doped Mg* can react with CH\textsubscript{4} at temperature as low as 573 K. A kind of coral-like carbon deposits formed on the undoped Mg* is observed.

Acknowledgments

The authors thank the National Natural Science Foundation of China and the Postdoctoral Science Foundation of China for the financial supports of this work. The authors also thank some conditions provided by Prof. Y. D. Li and some help offered by Senior Engineer J. F. Wang.

References

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Dopant</th>
<th>Doping amount (mol%)</th>
<th>Preparation methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>none</td>
<td>0</td>
<td>refs. [1, 2]</td>
</tr>
<tr>
<td>S2</td>
<td>NiCl₂</td>
<td>2.5</td>
<td>Ibid.</td>
</tr>
<tr>
<td>S3</td>
<td>NiCl₂</td>
<td>20.0</td>
<td>Ibid.</td>
</tr>
<tr>
<td>S4</td>
<td>Ni²</td>
<td>2.5</td>
<td>Ibid.</td>
</tr>
</tbody>
</table>

* powder.

Table 1. Composition and preparation of Mg systems

Figure 1. In-situ thermogravimetric curves of the Mg samples. S1-S4 are the same as those shown in Table 1. CH₄ flow rate: 40 ml min⁻¹. Heating rate: 10 K min⁻¹.

Figure 2. TEM micrographs of carbon deposits formed on S1 (a), S2 (b), S3 (c) and S4(d), respectively.