K. Sugihara, K. Matsubara*, M. Suzuki** and I. S. Suzuki**

College of Pharmacy, Nihon University, Funabashi, Chiba, 204 Japan *College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101 Japan ** Department of Physics, SUNY Binghamton, NY 13902-6016, U.S.A.

INTRODUCTION

The in-plane structure of the intercalant layers in SbCl₅ GlCs is composed of two segregated molecular species, SbCl₃ and SbCl6⁻ islands. The majority species SbCl6⁻ form a close packed $\sqrt{7} \times \sqrt{7}$ structure. On the other hand a nearly commensurate $\sqrt{39} \times \sqrt{39}$ structure is established below T₀=230K in the SbCl₃ islands with 100 -200 Å in size for stage n≥3. This unusual structure originates from the dimer formation of SbCl₃ pair with antiparallel dipole moments [1].

The c-axis resistivity ρ_c of stage -3 to 9 exhibits an anomalous thermal hysteresis between 180 and 250K as shown in Figs.1 and 2 [2,3]. In the following it will be shown that this anomaly can be explained in terms of the same model given by [1].

THEORETICAL CONSIDERATION ON THE C-AXISCONDUCTION

We assume that ρ_c for stage n≥3 is given by the following series resistance model:

$$\rho_{c} \approx \left\{ d_{1} \rho_{c} (GIG) + d_{G} (n-1) \rho_{c} (GG) \right\} / I_{c},$$

$$\rho_{c} (GG) = \sum_{i=1}^{n-1} \rho_{GG} (i, i+1) / (n-1), \quad (1)$$

where n is the stage number, $I_c = d_1 + (n-1)d_G$ the repeat distance, $\rho_c(GIG)$ is the partial resistivity related to graphite-intercalant-graphite sandwich layer and $\rho_{GG}(i, i+1)$ corresponds to the resistivity associated with $i \Leftrightarrow i+1$ transition without intervening intercalant layers. $\rho_{GG}(i, i+1)$ related to the inter-interior layer transition makes a bottleneck in the conduction process along the c-axis, and plays an important role in the longitudinal magnetoresistance $\Delta \rho_c / \rho_0$ and in the stage dependence of ρ_c vs T curve [4].

Carriers in the π -band spend most of the time in diffusive motion along the basal plane and occasionally make transition to adjacent layers. Let consider the behavior of stage-4 as a typical example in the intermediate stage compounds (see Figs.2 and 3). A distinct minimum of ρ_c around 200K in the heating process is ascribed to the inter-interior layer transition term in Eq. (1). Namely, $\rho_{GG}(i, i+1)^{-1} = \sigma_{GG}(i, i+1)$ increases with T for T<T_{min} because the long-range dipolar field fluctuation enhances the transition $i \Leftrightarrow i+1$ along the c-axis. The anomaly remains finite above T₀ since the molecular rearrangement associated with the order-disorder transition is not accomplished for a finite value of the temperature variation $\Delta T/\Delta t$. Consequently, the depth of the minimum of ρ_c vs T curve becomes large $\Delta T/\Delta t \rightarrow 0$ [3]. The behaviors of ρ_c in the process of decreasing T is also explained similarly.

Magnetic field along the c-axis affects the diffusion motion of carriers in the basal plane. This is the reason why a finite longitudinal magnetoresistance $\Delta \rho_c / \rho_0$ (positive or negative) is observed. $\Delta \rho_c / \rho_0$ for stage-4 is positive from helium temperature to room temperature for H>1kOe in contrast with the case in MoCl5 GICs[2]. Figure 3 shows a clear minimum of $\Delta \rho_c / \rho_0$ vs T curves around T=200K for H>5kOe. This anomaly comes from the scattering enhancement of carriers in the basal plane since the critical fluctuation of the longrange correlated dipolar field strongly scatters carriers.

Figure 4 illustrates the basal plane resistivity ρ_a versus T curve of stage-4 compound. It should be noted that ρ_a does not show any minimum around 200K in contrast with the case in ρ_c . Most important contribution to ρ_a comes from the bounding layer since $\rho_a^{-1} = \sigma_a = \sum_{i=1}^n \sigma_a^{(i)}$, where i denotes the layer index. This situation explains the increase of ρ_a above 200K, where the critical scattering due to the long-range dipolar fluctuation enhances the scattering process in the basal plane.

REFERENCES

- H. Homma and R.Clarke, Phys. Rev.B <u>31</u> 5865 (1985)
- 2) M.Suzuki, I.S.Suzuki, C. Lee, R. Niver,

K. Matsubara and K. Sugihara, to be published in J. Phys. C

- K. Matsubara, S. Higano, K. Kawamura, K. Sugihara, M. Suzuki and I. S. Suzuki, Proceeding paper in the Extended Abstracts.
- 4) K. Sugihara, K. Matsubara, M. Suzuki and I.S. Suzuki, submitted to Phys. Rev.B

Figure 3 c-axis magnetoresistance versus T curves for stage-4 SbCl₅ GIC as a parameter of magnetic field intensity.

Figure 2 c-axis resistivity ρ_{c} versus T curve for stage4 SbCl₅ GIC.

Figure 4 In plane resistivity ρ_{a} versus T curve for stage-4 SbCl_5 GIC.