EXTRAORDINARILY LARGE ASSOCIATION CONSTANTS OF AZULENES WITH FULLERENES

Naoki Komatsu, Sumanta Bhattacharya, A. F. M. Mustafizur Rahman, Takahide Kimura
Department of Chemistry, Shiga University of Medical Science, Seta, Otsu 520-2192, Japan

Abstract

Azulenes show very large association constants toward fullerenes (C_{60} and C_{70}) in the order of \(10^4 - 10^5\), which is similar to and even larger than those of designed host molecules reported so far. They also exhibit almost no selectivity to both C_{60} and C_{70}, which may be attributed to end-on structure of the C_{70} / azulene complex.

Introduction

Fullerene-based supramolecular complexes have attracted much attention from the viewpoint of the separation of fullerenes\(^{1-5}\) and the construction of photosynthetic systems and photonic devices.\(^{6}\) In light of stability of the complexes, host molecules with concave shape have been designed such as calixarene,\(^{7, 8}\) resorcarene,\(^{9, 10}\) cyclodextrin\(^{11}\) and carbon nanoring.\(^{12-14}\) However, it has been recognized that concave-convex interaction is not always necessary\(^{15}\) to realize highly stabilized complex since the first finding of remarkably close approach between curved \(\Delta\)-surface of fullerene and flat \(\Delta\)-surface of porphyrin in 1997.\(^{16}\) Actually, porphrin dimers,\(^{17-22}\) tetramer\(^{23}\) and hexamer,\(^{24}\) and even very simple monoporphyrins\(^{25}\) show comparable or even larger association constants to fullerenes than the concave host molecules listed above. Such a nonclassical strong \(\Delta\)-interaction has been known only in the fullerene-porphyrin complexes so far. Here, we describe another example of the strong flat-\(\Delta\)/ curved-\(\Delta\) interaction between fullerene and azulene having much smaller \(\Delta\)-conjugate system than porphyrin.

Materials and Methods

Azulenes\(^{26-28}\) and 5,10,15,20-tetrahexylporphyrin (THP)\(^{29}\) shown in Scheme 1 were prepared according to the reported methods. Association constants between fullerenes and azulenes (\(K_{C_{60}}\) and \(K_{C_{70}}\)) were determined by spectral changes on the fluorescence spectra upon the titration of fullerene solution to the azulene solution (Figure 1). The 1 : 1 stoichiometry of the azulene complexes with fullerenes is confirmed by continuous variation plots monitored by fluorescence (Figure 2).

Scheme 1. Structures of azulenes and porphyrin used for the determination of association constants with fullerenes.
Azulenes show extraordinarily large association constants ($10^4 - 10^5 \text{ dm}^3/\text{mol}^{-1}$) and no or low selectivity to C$_{60}$ and C$_{70}$ (Runs 1 – 4 in Table 1). As compared with the host molecules reported so far, the association constants of azulenes are comparable to or larger than those of bridged calixarenes,30,31 azacalixpyridines,32 cyclotrimeratrtylenes,33,34 and di- and tetraporphyrins.17,23 However, they are smaller than the well-designed host molecules such as carbon nanorings,12,35 cyclic diporphyrins21,22 and hexaporphyrins.24 Among flat π-conjugated molecules, azulenes exhibit the largest association constants; the association constants of azulenes ($K_{C_{60}}$ and $K_{C_{70}}$) are larger than those of monoporphyrins, flat molecule with larger π-conjugated system (Run 5).36 Noteworthy is that naphthalene, structural isomer of azulene, and other alternately conjugated aromatics were reported to show much less association constants towards fullerenes ($1 - 500 \text{ dm}^3/\text{mol}$).37,38

In order to gain insight into the complexation of azulenes with fullerenes, we calculated the energy-minimized structures of the complexes (Figure 3) and the enthalpy of the association (Table 2) by \textit{ab initio} Hartree-Fock method using STO 3-21G* basis set. Surprisingly, end-on structure of C$_{70}$ / azulene complex is more stable than its side-on structure (Run 1 in Table 2). This result is supported by the fact that azulene shows almost the same association constants to C$_{60}$ and C$_{70}$ (Run 1 in Table 1), because the structure in the polar region of C$_{70}$ is the same as that of C$_{60}$ as shown in Figures 3a and b. This complex structure of C$_{70}$ / azulene

<table>
<thead>
<tr>
<th>Run</th>
<th>Donor</th>
<th>$K_{C_{60}}$ (dm3/mol$^{-1}$)</th>
<th>$K_{C_{70}}$ (dm3/mol$^{-1}$)</th>
<th>$K_{C_{70}}/K_{C_{60}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Azulene</td>
<td>7.6×10^4</td>
<td>7.9×10^4</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>1,3-Dichloroazulene</td>
<td>6.7×10^4</td>
<td>7.3×10^4</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>4,6,8-Trimethylazulene</td>
<td>1.7×10^5</td>
<td>1.5×10^5</td>
<td>0.88</td>
</tr>
<tr>
<td>4</td>
<td>Guaiuzulene</td>
<td>5.4×10^3</td>
<td>8.3×10^4</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>THP</td>
<td>1.7×10^3</td>
<td>1.5×10^4</td>
<td>8.8</td>
</tr>
<tr>
<td>6</td>
<td>Naphthalene</td>
<td>0.67a</td>
<td>11a</td>
<td>16</td>
</tr>
</tbody>
</table>

a Determined by UV-VIS spectra.37,38

Figure 1. Fluorescence Spectra of azulene (8.46×10^{-5} mol/dm3) in the presence of C$_{60}$ ($0 - 8.23 \times 10^{-6}$ mol/dm3) in toluene at 298K. Inset: Stern-Volmer plot (correlation coefficient: 0.995).

Figure 2. Job’s plot of azulene (1.16×10^{-4} mol/dm3) and C$_{60}$ (1.16×10^{-4} mol/dm3) in toluene on fluorescence ($\Delta_{ex} = 351$ nm)
is in marked contrast with that of C\textsubscript{70} / porphyrins, where side-on structures are more stable (Run 2 in Table 2).17, 21, 25, 36, 39 The following two reasons are conceivable for the structural difference in the C\textsubscript{70} complexes of azulene and porphyrin. Since the size of azulenes is much smaller than that of porphyrins, the difference in the contact areas of end-on and side-on complexes of azulenes (ex. azulene / C\textsubscript{70} (end-on) and azulene / C\textsubscript{70} (side-on)) is much smaller than that of porphyrins (ex. THP / C\textsubscript{70} (end-on) and THP / C\textsubscript{70} (side-on)). On the other hand, azulenes possess both electron donating and accepting character in the five and seven membered rings, respectively. Such an adjacent and opposite electronic character of the two rings is very much suitable for the electrostatic interaction with electron-rich 6 – 6 and electron-deficient 6 – 5 junctures of fullerenes,40 giving extraordinarily large association constants. In both complex structures shown in Figures 1a and b, 6 – 6 and 6 – 5 junctures in C\textsubscript{60} and the polar region of C\textsubscript{70} face the electron-deficient seven-membered and electron-rich five-membered rings, respectively. However, azulene / C\textsubscript{70} (side-on) does not form such electronically compensatory interactions so well, resulting in less stable complex than the end-on structure (Run 1 in Table 2).

Acknowledgement

S. B. acknowledges Japan Society of Promotion of Science (JSPS) for providing post-doctoral fellowship to him (No. P05389). This work was supported by Grant-in-Aid for Scientific Research (No. 17A5389) from JSPS.

References

