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Introduction 
 
Many of the recently developed applications for microporous materials rely on an 
accurate understanding of their transport properties, over a range of fluid densities. 
However, there are significant difficulties in developing a tractable theory that can be 
used to characterize transport processes in these materials. Indeed, the difficulty in 
developing an analogous theory to describe transport over a range of fluid densities in 
macropores has been recognized since the theoretical models of Knudsen [1]. 
 
In this paper [2] we consider models for transport in microporous systems. At low 
densities, where intermolecular interactions are rare, we consider a statistical 
mechanical transport model. At higher densities, we consider two hydrodynamic slip 
models. Each of the models presented compares favourably with the computer 
simulation results for transport of methane in microporous carbon. 
 
 
Theory 
 
We consider fluid transport along a slit micropore of width H . The micropore is modeled 
as two infinite walls in the yz  plane, with transport along the z  axis. The pore-fluid 
interaction is modeled as a one-dimensional potential ( )V x  across the pore, and a 
diffuse boundary condition [3] at the pore wall. In our case, ( )V x  is defined by 
choosing the Steele 10-4-3 potential [4] to describe the interaction for each wall. The 
diffuse condition is described by an accommodation coefficient α , representing the 
average fraction of a molecule’s incident momentum that is lost to the wall during 
boundary interactions. Intermolecular interactions are modeled using a Lennard-Jones 
potential. 
 
At low densities, intermolecular interactions are rare, and the dynamics of a molecule is 
effectively described by the pore-fluid interaction only. For our low-density model, 
intermolecular interactions serve to ‘mix’ the energies of the fluid molecules, and are not 
explicitly included in the calculations of the molecular trajectories. The dynamics are 
therefore separable, and the quantity ( )= + 2 2/x xE V x p m  is a constant of the motion 
between intermolecular interactions. A molecule oscillates across the pore in a manner 



determined by xE  and ( )V x , and the time τ  for a molecule to oscillate across the pore 
is a function of xE  – 
 
 ( ) ( )[ ]τ −= −∫
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where the integration is performed over the range of x  accessible to the molecule. If the 
system is at thermal equilibrium with its environment, the distribution of states of these 
oscillating molecules is determined by the canonical (Maxwell-Boltzmann) distribution. 
From this information, the density and velocity profiles of molecules traveling along the 
pore can be determined for an external driving force F , from which the flux, and 
ultimately the transport diffusion coefficient 0D , can de determined – 
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We note that it is straightforward to extend the above theory to cylindrical pores [5,6]. 
 
As the fluid density increases, the interaction between fluid molecules dominates the 
solid-fluid interaction, and the oscillator model no longer captures the essential behavior 
of diffusing molecules. At high densities, therefore, we turn to an alternative model – a 
slip flow model [7,8]. As with the low-density model, the aim of the model is to develop 
an expression for the mass flux, from which 0D  can be determined. The density profile 
is obtained from an appropriate density functional theory, or from molecular simulation. 
The velocity profile is obtained from the Navier-Stokes relation 
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⎝ ⎠

zd dv xx F x x
dx dx

, (3) 

 
where ( ) ( ) ( ) ( )η ρ, , ,zx v x x F x  represent the viscosity, velocity and density profiles, 
and the mean external force at x . The viscosity profile can be estimated from an 
equilibrium density correlation [9], and Eqn.(2) integrated to obtain the velocity profile 
across the pore. Two boundary conditions are required – a symmetry condition, and a 
frictional slip condition at the boundary 0x , of the form 
 

 ( ) ( ) ( )η= −0 0
z

z
dv xmv x Z x
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where 0Z  represents the frequency of reflections at the pore wall, which can be 
estimated from kinetic theory. The diffusion coefficient for this model (model A) is 
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with mean pore density ρ̂ . The first term in the square brackets represents a boundary 
contribution; the second term represents a viscous contribution. At low density, as the 
viscous contribution goes to zero, we expect the boundary term to converge to the 
oscillator result. As an alternative model (model B), we propose 
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Simulation Details 
 
We apply the theory developed above to the transport of methane in microporous 
carbon, with H < 2 nm. The potential in each slit pore is determined using the Steele 
10-4-3 potential for each wall, and diffuse boundary conditions were applied (α = 1) 
during molecular dynamics (MD) runs. Grand canonical Monte Carlo (GCMC) 
simulations were performed to determine density profiles, and generate initial conditions 
for MD simulations. 0D  was measured from both equilibrium MD (EMD) and 
nonequilibrium MD (NEMD). For equilibrium simulations, 0D  was determined from the 
Green-Kubo expression – the autocorrelation function of the center-of-mass velocity: 
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For nonequilibrium simulations with external force F , 0D  was determined via the flux J  

 ρ=0 ˆ/BD Jk T F . (7) 
 
Results and Discussion  
 
The transport coefficients determined form EMD and NEMD were in good agreement 
with one another (see Figs. 1 and 2), consistent with observations from other studies. At 
low densities (Henry’s Law region), 0D  remains constant. In the 1.0 nm pore, 0D  
decreases with increasing density – as the density increases, the rate of diffuse 
collisions increases, lowering the overall transport rate. In the wider pores, 0D  
increases until a local maximum is reached. The viscous forces appear to drive this 
increase as central layers of fluid molecules form, until the presence of these layers also 
increases the rate of diffuse collisions. 
 
We observe excellent agreement between the low-density simulation data and the 
oscillator model, as seen in Figure 3. The model predictions for the transport coefficient, 
the density profile and the velocity profile are all supported by the simulation results. 
Furthermore, the oscillator model prediction for 0D  can be applied up to densities of 1 
nm-3, corresponding to bulk pressures of one atmosphere. 
 
We note that the significant difference between the two high-density models derives 
from the boundary term. In model A, it is a functional of the density profile; in model B it 
is a functional of the fluid-pore interaction potential, and therefore independent of 



density. We observe from Figs. 1 and 2 that both models agree well with the simulation 
results of the systems examined, although model B fails at high density in the 1.0 nm 
pore. This is because the viscous contribution in the model is always positive, but the 
trend in 0D  is negative. This is consistent with our interpretation of this negative trend in 
terms of boundary collisions. Overall, model A predicts well in the 1.4 nm pore, 
underpredicts the density-dependent effects in the narrower pore, and overpredicts 
these effects in the wider pore. The boundary term of model A appears to become less 
reliable as the pore width increases. Model B appears generally to overestimate the 
density effect on the transport coefficient, indicating that some of these effects are 
compensated by the change in density-dependence of the boundary interaction. We 
note that model B becomes more reliable as the pore width increases.  
 
 
Conclusions 
 
In the Henry’s Law regime, the dynamics are dominated by the solid-fluid interaction 
potential, and the oscillator model provides a good estimate for the transport behavior. 
The oscillator model appears to capture the essential details of low-density transport. At 
higher densities, we present two hydrodynamic transport models, with boundary 
conditions determined by a slip condition (model A) or based on the oscillator model 
(model B). Both model the transport processes as a combination of boundary and 
viscous effects, and provide valuable insight into the complex interplay between these 
two effects as the density changes. 
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Figure 1. Estimates of the transport 
coefficient for transport in (a) 1.0 nm, 
(b) 1.4 nm, and (c) 2.0 nm pore at 298 
K. The coefficients are determined by 
EMD (circles) and NEMD (squares) 
simulation, as well as from model A 
(triangles) and B (solid line). 
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Figure 2. Estimates of the transport 
coefficient for transport in (a) 1.0 nm, 
(b) 1.4 nm, and (c) 2.0 nm pore at 
400 K. The coefficients are 
determined by EMD (circles) and 
NEMD (squares) simulation, as well 
as from model A (triangles) and B 
(solid line).(c)
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Figure 3. Low density model: 
Variation of transport coefficient with 
slit width for the adsorption of 
methane at 298 K in carbon slit 
pores. The line corresponds to the 
model predictions and symbols to 
simulation data. 


