RAMAN- AND ¹³C- NMR-INVESTIGATIONS IN C₆₀- INTERHALOGEN COMPOUNDS

L. Carta- Abelmann, P. Scharff, F. Beguin and P. Lauginie Institut für Anorganische und Analytische Chemie, TU-Clausthal, Paul Ernst Strasse 4, D-386784 Clausthal- Zellerfeld, Germany CRMD; CNRS; IB rue de la Ferollerie, 45071 Orleans Cedex 2, France

Introduction

Halogenated fullerenes are known to be important synthetic intermediates, for example in order to prepare water-soluble fullerols of definite stoichiometry. Therefore the preparation and characterization of halogenofullerenes were of particular interest^[Lit.]. The conversion with iodine proved to result in intercalation compounds without any evidence for significant charge transfer^[1]. Bromine, chlorine and iodine have been confirmed to make covalent bonds to $C_{60}^{[2]}$. In C_{60} derivatives with interhalogen compounds like IBr and ICl the possibility of superconductivity was discussed^[3]. Here we report on the results of ¹³C NMR- and Ramaninvestigations on C₆₀ converted with IBr, ICl and ICl₃. The object was to collect informations about the structure of the obtained products and about the charge transfer to or from the carbon atoms in C_{60} .

Experimental

All chemicals were of reagent grade and were used without further purification. C_{60} , IBr, ICl and ICl₃ were prepared as reported elsewhere^[4]. For chemical analysis the C_{60} derivates were disintigrated in boiling 20% NaOH solution containing 2% Na₂SO₃. The residue, consisting of C_{60} , was rinsed with water and subsquently dried and weighed. In the solution I⁻, Br⁻ and/or Cl⁻ were determined by potentiometric titration with 0.1M AgNO₃.

Raman spectra were recorded at room temperature with a Bruker IFS 66 spectrometer attached to a Bruker FRA 106 Raman unit (Nd: YAG-laser, 1064 nm, 0-300 mW, resolution 1cm⁻¹).

¹³C solid state NMR spectra were recorded using a Bruker Avance DSX 360 spectrometer at 84.6 kG.

Results and Discussion

 C_{60} was converted with interhalogen compounds IBr, ICl and ICl₃. The fullerene material was exposed to the vapour phase of the respective interhalogen compound in

a sealed glass ampoule at 60-70°C for two weeks. After removing excess IBr, ICl or ICl₃, respectively, by passing over N₂ at room temperature, the reaction products were analyzed. The compositions were found to be $C_{60}(IBr)_{4,3}$, $C_{60}(ICl)_{15.9}$ and $C_{60}I_{3.2}Cl_{27.4}$. All products proved to contain various amounts of unreacted C_{60} and were unstable on air. In the Raman spectra (Fig. 1) some fundamental vibrations of pure C_{60} , as well as C-Br or C-Cl vibrational bands can be detected. Furthermore the $C_{60}(IBr)_{4.3}$ sample reveals some Raman modes (Fig. 2) which are typically attributed to C_{60} dimers^[5].

The ¹³C solid state NMR spectra were analysed in terms of the chemical shift anisortopy (CSA).

The ¹³C NMR spectrum of $C_{60}I_{3,2}CI_{27,4}$ (Fig.3) shows a main peak at 64.30 ppm, which corresponds to C-Cl bonds. The sample contained only very small amounts of pure C_{60} causing the signal at 140.46 ppm. In the case of the $C_{60}(ICI)_{15,9}$ two different sites can be resolved. The signal at 142.22 ppm can be attributed to freely rotating C_{60} molecules. The CSA effect is discussed in terms of the variation of the electron density at two various carbon sites caused by a charge transfer effect.

Also in the NMR spectra of $C_{60}(IBr)_x$ an anisotropy effect appears. The main peak at 141.62ppm is almost unshifted relative to the peak of the pure C_{60} . The chemical shift anisotropy in this sample is slightly different in comparison with $C_{60}(ICl)_{15.9}$, which can be explained by a reduced charge transfer effect.

Conclusions

It was found that by conversion of C_{60} with ICl₃ a complete chlorination of the C_{60} cluster is achieved. I₂, which is formed by the decomposition of ICl₃ during the reaction, is located in the interlayer gaps. Upon the reaction with ICl only part of the C_{60} molecules were chlorinated. A strong charge transfer effect could be observed by ¹³C NMR investigations. The reaction of C_{60} with IBr leads to the formation of covalent C_{60} -Br-bonds and again intercalation of I₂, coming off the decomposition of IBr. We also found that the conversion of C_{60} with IBr causes a dimerization of \uparrow the C_{60} molecules in part. Additional a small charge transfer effect can be observed.

References

[1]Grushko Yu. S., Wortmann G., Kovalev M. F., Molkanov L.I., Ganzha Yu. V., Ossipyan Yu.A., Zharikov O.V.
I- Moessbauer Study of iodine-doped C₆₀ Sol. State Com.

1992;84(5):505-509

Figure 1. Raman spectrum of C₆₀(ICl)_{15.9}

[2]Tebbe F. N., Harlow R. L., Chase D. B., Thorn D. L., Campbell G. C., Jr., Calabrese Jr., J. C., Herron N., Young R.J., Wassermann Jr., E. Synthesis and Single-Crystal X-ray structure of a highly symmetrical C_{60} derivative, $C_{60}Br_{24}Science 1992;256:822-824$ [3]Kao Y.H., Song L., Chung D. D. L., Fredette K. T. Halogen-doped superconductive fullerenes US Patent 5380703 A, 1996 [4]Scharff P. Oxidation of Buckminster fullerene C_{60} in Brönsted- acids Carbon 1994;32(4):709 [5]Lebedkin S., Gromov A., Giesa S., Gleiter R., Renker B., Rietschel H., Krätschmer W. Raman scattering study

of C₁₂₀, a C₆₀ dimer Chem. Phys. Let. 1998;285:210-215

Figure 2. Raman spectrum of C₆₀(IBr)_{4.6}

Figure 3. ¹³C NMR solid state spectrum of $C_{60}I_{3,2}Cl_{27,4}$