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Research and development of lithium ion batteries, 
having a carbon host doped with lithium as the an- 
ode, is currently a very active research field because 
of the generM need for light weight, safe, recharge- 
able battery cells for portable electronic devices, t-3 
Previous studies on P PP heat treated up to temper- 
atures THT "~3000°C have examined the electronic 
properties 4,5 and structural characteristics 5'6 of PPP- 
based carbons. In this work we examine the optical 
properties of P PP-based carbons heat-treated to vari- 
ous temperatures, using Raman scattering as a probe 
of the vibrational spectra, and photoluminescence (PL) 
to study the electronic structure related to the compli- 
cated defect structure within the carbon-polymer ma- 
trix. Our goal is to understand why P PP heat treated 
to 700°C has such a high lithium uptake. 7 

The granular P PP was synthesized by the Kovacic 
method s, pressed into --~ 15ram diameter discs, and 
heat treated to various temperatures between 600 and 
750°C for 1 hour in high purity argon gas, using a 
conventional resistance furnace. PL spectra (Aexc-- 
350 am) were collected from samples heat treated at 
THT=600°C, 650°C, 675°C and 700°C as well as from 
the polymer prior to heat-treatment (pristine PPP).  
The P L results are shown in Fig. 1. The P L spectra 
from the pristine PPP sample showed spectral features 
in the blue-green located at 426 nm, 453 am, 480 nm 
and 515 am, along with a dominant, broad, red PL 
structure centered at 668 nm with lesser contributions 
at 619 nm and 726 am. The PL from the PPP-600 sam- 
ple consisted of similar spectral features but the broad 
red P L structure was much reduced in intensity, and 
the structure in the red was no longer distinct. The P L 
intensity from the PPP-650 sample was much smaller 
than from the PPP-600 sample and the features in the 
blue-green can no longer be clearly seen. 

PL provides an effective probe of the presence of the 
polymer in the samples after the heat-treatments, since 
the polymer fragments exhibit strong P L emissions, 
but the disordered carbon regions formed from the 
polymer precursor generally will not luminesce. Our 
experimental results clearly indicate the presence of the 
polymer in PPP samples with TaT <_ 675°C. 

Raman spectra of all heat-treated samples were col- 
lected using excitation wavelengths, Aexe, equal to 
488.0 nm and 514.5 am. Figure 2 shows Raman spec- 
tra for all samples excited at 514.5 am. A single well- 

defined band at 1605 cm - t  is observed, along with 
weaker bands in the range 1200-1500 cm - t .  The high- 
frequency band at 1605 cm- t broadens with increasing 
THT, with a fun-width-half-maximum (FWHM) rang- 
ing from 25 to 49 cm - t  for samples PPP-650 through 
PPP-750, respectively. As THT is increased above 
700°C, the low-frequency structure in the Raman spec- 
trum becomes less defined, leading to a single, broad 
peak near 1330 cm - t .  For samples PPP-650 and PPP- 
675, structure at 1244, 1271 and 1331 c m  - 1  a r e  well 
resolved using Aexc at both 514.5 nm and 488.0 nm. 

A detailed least-squares fit to Raman data collected 
at 488.0 nm indicates the presence of several low fre- 
quency peaks in samples PPP-650, PPP-675 and PPP- 
700. Figure 3 shows the results for PPP-650. All peaks 
are well described by Lorentzian lineshapes, after sub- 
traction of a linear background term in the fitting rou- 
tine. The aforementioned bands (,~1240, --~1270 and 
,,~1330 cm -1) are well accounted for by the fit, but a 
better fit is obtained if small Lorentzians centered at 
1216 and 1360 cm -1 are also used to fit the PPP-650 
and PPP-675 spectra. 

The vibrational spectra of pristine PPP has been 
studied extensively? -12 A planarized PPP molecule in 
its ground state possesses D~h symmetry, yielding the 
following in-plane modes at k=0: 

5Ag + 5Big + 4B2~, + 4B3~,. 

Of these, 3 Ag modes produce strong Raman lines 
in the range 1100 cm- t  to 1800 cm- t ,  namely at 
-.~1220 cm -1 ..~1280 cm - t  and ..~1600 cm -1 for 
a benzenoid configuration. It is also well known 
that a (higher energy) quinoid state exists for the 
molecule, producing Raman lines near 1240 cm - t  
and 1330 cm - t ,  slightly higher in frequency from 
those for the benzenoid system due to a redistribu- 
tion of C-C double-bonds. Such an excited (doping- 
induced) molecular state has previously been observed 
optically. Is 

We conjecture that the Raman spectra for P PP heat- 
treated near 700°C is the result of a superposition of 
peaks derived from both quinoid and benzenoid seg- 
ments, the former being induced by disorder. Ulti- 
mately, a planar configuration of phenyl groups is en- 
ergetically favored as the heat treated solid loses more 
hydrogen and forms small graphene ribbons and seg- 
ments. 
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Raman studies reveal that,  for P PP samples with 
THT ",'700°C, features in the Raman spectrum be- 
tween 1200 cm -z and 1500 cm -1 may be identified 
with modes derived from each of the resonant P PP 
molecular structures. Thus, at low THT, we find the 
co-existence of a mostly quinoid-like disordered PPP  
material with smaller amounts of benzenoid-PPP and 
turbostratic graphene constituents. The crosslinking of 
polymer chains that  occurs with heat- treatment  results 
in pockets of polymer surrounded by regions of the tur- 
bostratic graphene constituents. It seems that  in P PP- 
700, ~r-electron delocalization over the polymer chains 
and between chain segments prevents strong lumin- 
scence. However, phonon modes in conjugated poly- 
mers are more strongly influenced by the rearrange- 
ment of (r-electrons as opposed to z-electrons, thereby 
allowing a quinoid-like PPP  skeleton to exist in PPP-  
700 which is confirmed by the observed Raman spec- 
trum. 

The various regions within the PPP-700 material 
provide a variety of sites for binding lithium. The tur- 
bostratic graphene regions would provide sites similar 
to those observed in first stage Li intercalated graphite 
intercalation compounds (GIC). The many edge sites 
from the disordered polymer and the pre-graphitic clus- 
ters also provide binding sites for lithium. 
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FIG. 1. Plot of PL emission vs. wavelength for sam- 
ples of PPP subjected to different heat treatment tem- 
peratures (THT=0°C, 600°C, 6500C, 675°C, 700°C). 
Excitation was at 3.54 eV (350 nm). 
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FIG. 2. Raman spectra for Aexc = 514.5 nm of poly- 
paraphenylene (PPP) heat treated to (a) 650°C, (b) 
675°C, (c) 700°C, (d) 725°C and (e) 750°C showing 
the evolution of the Raman peaks over a narrow ATHT 
range. 
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FIG. 3. Low frequency Raman spectra of PPP-650 
showing the superposition of several peaks, presum- 
ably due to the coexistence of benzenoid and quinoid 
segments (see text). 
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