## c-AXIS MAGNETORESISTANCE OF GRAPHITE

## Ko Sugihara

College of Pharmacy, Nihon University 7-7-1
Narashinodai Funabashi-shi Chiba 204, Japan
Keiko Matsubara, Yuuich Sakurai, and Takuro Tsuzuku
Colllege of Science and technology, Nihon University
1-8 Kanda-Surugadai Chiyoda-ku Tokyo 101, Japan

#### INTRODUCTION

Highly oriented pyrolytic graphite(HOPG) and kish graphite(KG) exhibit the large positive magnetoresistance in strongly contrast with the pyrocarbon samples which show the weak negative magnetoresistance[1].

Figures 1 and 2 represent our experimental results of  $\Delta \rho_c/\rho_c$  for KG and HOPG samples at H=6.8 kG over 4.2 K ~ 300 K. In an ideal graphite sample with a parallel layer stacking  $\Delta \rho_c/\rho_c$  should be zero since  $\mathbf{v}_c \times \mathbf{H} = 0$ , where  $\mathbf{v}_c$  denotes the electron velocity along the c-axis. In the next section we propose a qualitative explanation for the two main results: (i) Why does  $\Delta \rho_c/\rho_c$  become finite? and (ii) the big difference in  $\Delta \rho_c/\rho_c$  for KG and HOPG.

# MECHANISM OF THE c-AXIS MAGNETORESISTANCE

Observed magnetoresistance takes the following values for H=6.8 kG:

$$\frac{\Delta \rho_c}{\rho_c} = \begin{cases} 400 & \text{for KG} \\ 8 & \text{for HOPG} \end{cases}$$
 at 4.2 K (1)

and

$$\frac{\Delta \rho_c}{\rho_c} = \begin{cases} 0.274 & \text{for KG} \\ 0.114 & \text{for HOPG} \end{cases}$$
 at 300 K (2)

These results imply that the c-axis magnetoresistance stems from a slight mixing of the a-axis conduction caused by a small deviation from the parallel layer alignment.

Consider a crystallite with a small angle  $\theta$  between **H** (parallel to z-axis) and its c-axis. Simplified series resistance model leads to the following expression for the conductivity  $\sigma_z$  as

$$\sigma_z = \left\langle \left( \frac{\alpha}{\sigma_c \cos^2 \theta} + \frac{\beta}{\sigma_a \sin^2 \theta} \right)^{-1} \right\rangle_{\theta} \tag{3}$$

where  $(...)_{\theta}$  indicates an average over  $\theta$ , and  $\alpha$  and  $\beta$  are the parameters with order of unity (z-axis should not be confused with the c-axis).

(i) H = 0 case:

Figure 3 illustrates the typical  $\rho_c$  versus T-curves for HOPG and KG samples without magnetic field[2]. HOPG satisfies the condition

$$\frac{\alpha}{\sigma_c \cos^2 \theta} \gg \frac{\beta}{\sigma_a \sin^2 \theta} \tag{4}$$

, while the opposite relation is realized in KG

$$\frac{\alpha}{\sigma_c \cos^2 \theta} \ll \frac{\beta}{\sigma_a \sin^2 \theta}.$$
 (5)

According to Ono's theory[2,3] the c-axis conduction in HOPG is mainly controlled by a strong electron wave reflection on the stacking fault planes and we obtain eq.(4). On the other hand, the stacking faults play a minor role in KG and the observed metallic temperature dependence of  $\rho_c$  comes from the behavior of  $\rho_a$ .

(ii)  $H \neq 0$  case:

In the presence of a magnetic field  $\sigma_a$  is a strong function of  $H_{eff} = H \cos \theta$ , while  $\sigma_c$  is assumed to be independent of H.

(a) HOPG

 $\sigma_a$  rapidly decreases with H and eq.(4) becomes

$$\frac{\alpha}{\sigma_c \cos^2 \theta} \ll \frac{\beta}{\sigma_c \sin^2 \theta},\tag{6}$$

and a large magnetoresistance is observed as

$$\frac{\Delta \rho_z}{\rho_z} \approx \frac{\beta}{\alpha} \left( \frac{1}{\theta_0^2} \right) \frac{\sigma_c}{\sigma_a(H)} \approx 20 \left( \frac{\beta}{\alpha} \right). \tag{7}$$

In deriving the above value we employed the following parameters:

$$\sigma_{c} = 10 \quad (\Omega cm)^{-1} \quad [2]$$

$$\sigma_{a}(H\cos\theta) \approx \sigma_{a}(H) = 0.5 \times 10^{3} \quad (\Omega cm)^{-1} \quad [4]$$

$$\theta \approx \theta_{0} = 2^{\circ} (\text{mosaic spread})$$

$$\sigma_{a}(H) \ll \sigma_{a}(0)$$

If we assume  $\alpha/\beta \approx 1/2$ , eq.(7) is close to the observed value.

(b) KG

The inequality (5) still holds in KG and thus, we have

$$\frac{\Delta \rho_z}{\rho_z} \approx \sigma_a(0) \left\{ \frac{1}{\sigma_a(H)} - \frac{1}{\sigma_a(0)} \right\} \approx \frac{\sigma_a(0)}{\sigma_a(H)}. \quad (8)$$

By inserting the values obtained in ref.(4) into eq.(8), we have

$$\frac{\Delta \rho_z}{\rho_z} \approx 10^2 \sim 10^3 \text{ for } H = 6.1 \text{kG and } T = 4.2 \text{ K}, \label{eq:delta_prob_z}$$

which is consistent with the experimental result, where H=6.1 kG is the field intensity employed ref.(4).

### REFERENCES

- 1. V.Bayot, Thesis of Dr. of Applied Science (1991)
- K.Matsubara, K.Sugihara and T.Tsuzuku, Phys. Rev. **B41** (1990) 969
- 3. S.Ono, J. Phys. Soc. Jpn. 40 (1976) 498
- K.Kawamura, T.Saito and T.Tuzuku, J. Phys. Soc. Jpn 42 (1977) 574



Fig.1  $\Delta \rho_c/\rho_c$  versus T curve for KG sample.



Fig.2  $\Delta \rho_c/\rho_c$  vs T curve for HOPG sample.



Fig.3  $\rho_c$  curves for HOPG and KG sample(H=0).